力学的相似則に基づく小型モデルを用いた大型薄膜構造物の展開挙動予測 Prediction of Deployment Behavior of Large Thin Membrane Structure Using Small Model Based on a Scale Law

指導教授 奥 山 圭 一

M9016 多 々 良 飛 鳥 Asuka Tatara

Prediction of on-orbit deployment behavior is necessary to design large gossamer space structures. However, it is difficult to conduct function tests of the full-scale structure system on the ground such as the deployment test because the structure is too large to cancel the effect of the gravity and the aerodynamic drag. There have been proposed several prediction methods of the deployment motion of the full-scale model by a small model that is available for ground test, which needs scale law of the deployment motion. Therefore, several scale laws have been proposed, but their prediction performance is not sufficient. There are two main reasons. One is that it is difficult to fabricate the small model which is completely similar to the full-scale model. The other is that it is impossible to test the deployment on the ground under the same environment as the space, i.e. under vacuum and micro-gravity environment. This paper proposes a prediction method of deployment behavior of large thin membrane structure by ground test using small model based on a scale law. The proposed method is applied to the spin-deployment of solar sail and is verified by numerical simulation and ground test.

1. 序論

1.1. 研究背景

宇宙科学ミッションの高度化に伴い, Fig.1 に示すような大 面積かつ軽量な宇宙構造物への需要が高まってきている.^[1]こ れらは大型ゴッサマー構造(ケーブルや薄膜を用いた柔軟な 部材で構成される展開構造)で実現が可能とされている.しか し,このような柔軟構造は軌道上挙動予測が容易でないのに もかかわらず,大型であるため展開試験等といった全系の機 能試験を地上で実施することがほぼ不可能である.そのため, 打ち上げ可否の判断が難しく,これらを用いたミッションの 実現が困難な状況にある.

このような状況を改善するため、小型モデルや部分モデル を用いた地上試験結果に力学的相似則を適用することで全系 フライトモデル(以下、フルモデル)の軌道上挙動を予測する ことが挙げられている^{[2],[3]}.しかし、フルモデルと完全に幾何 学的相似な小型モデルの製造が困難である場合が多く、また、 地上と宇宙環境の差異(空気抵抗・重力の有無)が無視できな い等といったことから、力学的相似則に基づいた小型モデル であっても、それを用いた地上試験結果を用いたフルモデル の軌道上挙動予測は困難であった^[3].

1.2. 研究目的

本研究の目的は、力学的相似則に基づく小型モデルを用いた大型ゴッサマー構造物の軌道上挙動予測方法を確立することである。そこで、本稿では JAXA が 2010 年に打ち上げた小型ソーラー電力セイル実証機 IKAROS のスピン展開を例に、大型ゴッサマー構造の展開運動における力学的相似則と

小型モデルへの適用法を提案し,数値解析結果と地上試験結 果を用いて提案手法の妥当性評価を行った結果を示す.

2. 力学的相似則

本章では力学的相似則の概念を述べるとともに、IKAROS のスピン展開運動における相似パラメータを示す.

2.1. 力学的相似則の概念

本研究で用いる力学的相似則は. 基本的には先行研究^{四,3}で 示されているものと同様のものである. すなわち,構造シス テム内の各構造要素エネルギ比がフルモデルのそれと一致す るよう小型モデルを設計する. 系全体のエネルギ II を各要素 における運動エネルギ T_i(総要素数は M 個)と各要素におけ るポテンシャルV_i(総要素数は N 個)の線形和で表すと,

$$\Pi = \sum_{i=1}^{M} T_i + \sum_{j=1}^{N} V_j$$
(2.1)

と書け、さらに(2.1)式は

$$\Pi = \sum_{i=1}^{M} T_i^* \tilde{T}_i + \sum_{j=1}^{N} V_j^* \tilde{V}_j$$
(2.2)

と変形することができる. (2.2)式内の T_i^*, V_j^* は有次元係数, \tilde{T}_i, \tilde{V}_j は無次元係数である. さらに,任意の有次元係数(ここ では T_1^* を用いる)で無次元化すれば,

$$\Pi \equiv T_{1}^{*} \left(\tilde{T}_{1} + \sum_{i=2}^{M} \hat{T}_{i}^{*} \tilde{T}_{i} + \sum_{j=1}^{N} \hat{V}_{j}^{*} \tilde{V}_{j} \right)$$
where $\hat{T}_{i}^{*} = T_{i}^{*} / T_{1}^{*}$, $\hat{V}_{j}^{*} = V_{j}^{*} / T_{1}^{*}$
(2.3)

となる. この無次元化された有次元係数 \hat{T}_i^*, \hat{V}_j^* を相似パラメ ータとし,これらがフルモデルと小型モデルとで一致するよ うに小型モデルの設計パラメータを決定する.

2.2. IKAROS のスピン展開運動における相似パラメータ

本節では, IKAROSのスピン展開運動における各要素(Fig.2 の()内に示す要素)の各エネルギと非保存力に関する相似パ ラメータ,及びスピン展開特有の初期角速度に関する相似パ ラメータを示す(導出過程は紙面の都合上,省略し,本論及 び文献[4]に譲る).まず,(2.3)式における T_1^* を膜の運動エネ ルギに関する相似パラメータ T_m^* とする.また,実機の展開時 に重力と空気抵抗は作用していないものとし,それらに関す る相似パラメータ V_g^* , δW_{air}^* を無視する.このとき,一致さ せるべき相似パラメータは Table 1 に示す 9 つとなる.

Fig.2 Components of small model of IKAROS

Table 1 Scale law parameters of spin-deployment of IKAROS

Item	Parameter
Kinetic energy of membrane \hat{T}_m^*	1
Strain energy of membrane \hat{V}_m^*	$ET^2 / \rho X^2$
Spring back energy in fold line $\hat{V}_{spring}^{f^*}$	$EL_f h \lambda T^2 / \rho X^4$
Kinetic energy of cable \hat{T}_c^*	$ ho_c A_c \ / \ ho h X$
Strain energy of cable \hat{V}_c^*	$E_c A_c T^2 / \rho h X^3$
Kinetic energy of tip mass \hat{T}_{tip}^*	$m_t / \rho h X^2$
Kinetic energy of satellite main body \hat{T}_{rigid}^*	$I_{rigid} / \rho h X^4$
Gravity potential V_g^*	-
Aerodynamic drag δW_{air}^*	-
Damping of membrane $\hat{V}_{\gamma}^{m^*}$	$ET\gamma / \rho hX^2$
Damping of cable $\hat{V}_{\gamma}^{c^*}$	$E_c A_c T \gamma_c / \rho h X^3$
Initial spin rate ϕ_{rot}^{*}	$\omega_o T$

3. 小型モデルの設計パラメータの決定手順

本章では、フルモデルの設計パラメータが明らかであると き、前章で示した相似パラメータを用いた小型モデルの設計 パラメータの決定手順について述べる.

3.1. 宇宙環境下(重力なし, 真空)での小型モデル

本節では、宇宙環境下での小型モデルの設計パラメータの 決定手順を述べる.フルモデルに関するパラメータは上付き 添え字L,小型モデルに関するパラメータは上付き添え字を 付けない、あるいは、上付き添え字sを付ける.

- 実験スペース(真空チャンバーのサイズ等)より,代表長 さX(例えばセイルの場合,正方形1辺の長さ)を決定す る.
- 腹の折り数 N_f を決定する.フルモデルと異なる折り数 とした場合,フルモデルと幾何学的に相似でなくなるた め,3.3 節に示す修正が必要となる.
- 譲の材料を選定する.これにより, 膜のヤング率 E, 密 度ρ, ポアソン比ν, 厚さh, 折り癖角度θ_{ref}が与えら れる.
- (4) 膜の歪エネルギに関する相似パラメータ V^{*s}_m と V^{*L}_m を

 合わせ,代表時間 T を求める.
- 5) ケーブル材を選定する. これにより各テザーのヤング率 E_c が与えられる. ケーブルに関する運動エネルギ, 歪エ ネルギに関する相似パラメータ $\hat{T}_c^{*s} \geq \hat{T}_c^{*L}, \hat{V}_c^{*s} \geq \hat{V}_c^{*L}$

を合わせ、各テザーの密度 ρ_c 、断面積 A_c を求める.

- 6) 各相似パラメータと \hat{T}_{tip}^{*s} , $\hat{T}_{rigid}^{*s} \geq \hat{T}_{rigid}^{*L}$, $\phi_{rot}^{*s} \geq \phi_{rot}^{*L}$, $\hat{V}_{\gamma}^{m^{*s}} \geq \hat{V}_{\gamma}^{m^{*L}}$ 及び $\hat{V}_{\gamma}^{c^{*s}} \geq \hat{V}_{\gamma}^{c^{*L}}$ をそれぞれ合わせ, 先端 マスの質量 m_t , 中心衛星の慣性モーメント I_{rigid} , 初期 角速度 ω_o 及び, 膜と各テザーの減衰係数 γ , γ_c を求める.
- 7)折り目のパラメータを決定する.ここでの折り目のパラメータとは、数値解析の場合は折り目のスプリングバック係数 kf^[6]を、地上試験の場合は折り目の全長 Lf のことを意味する.実験では、算出された等価全長 Lf が幾何学的に決まる長さより短い場合は折り目に沿って切り込みを入れる、長い場合は折り目部分を補強することで満たす.本研究では次に示す2パターンで解析を行った.
- case1) 折り目の全長 L_f は折り目のスプリングバックエネ ルギに関する相似パラメータ \hat{V}_{spring}^{f*s} と \hat{V}_{spring}^{f*L} を合わせ ることで決定する.
- case2) 折り目の全長 L_f は幾何学的に決まる長さのままに する(折り目のスプリングバックエネルギに関する相 似パラメータ \hat{V}_{spring}^{f*s} と \hat{V}_{spring}^{f*L} を合わせず,折り目の 影響を無視する).
- 8) この他の設計パラメータ(中心衛星の直径,各テザーの 長さ等)はフルモデルと幾何学的相似になるよう決定す る.

3.2. 地上試験環境下(重力あり, 真空)での小型モデル

本節では、重力のある環境下であっても十分な予測性能を 持つような小型モデルの設計パラメータの決定手順について 述べる.重力による膜のたわみを軽減するために初期スピン レートを大きくすること、及び、折り目の全長を調節する際 に折り目に沿って切り込みを入れなくて済むようにすること を念頭に、本決定手順を考えた.

- 1) 折り目のスプリングバックエネルギに関する相似パラ メータ \hat{V}_{spring}^{f*s} と \hat{V}_{spring}^{f*L} を合わせることにより,代表時間 Tを決める.
- 代表時間以外の設計パラメータは 3.1 節と同様の手順・ 方法で設計パラメータを決める.

なお,たわみ量が全長 1m の約 1%程度になることを簡単な計 算と FEM で確認した上で初期スピンレートを決定した.

3.3. スピン展開特有の修正

3.1 節, 手順2)で折り数がフルモデルと異なると, その小型 モデルはフルモデルと完全には幾何学的相似にならない. こ のようなモデル間での幾何学的不一致は実験モデルを製造す る上で避けられない場合もある.しかし,これが原因で,相 似パラメータはフルモデルと一致していたとしても,適切に フルモデルの運動を再現できない可能性がある.実際,後述 する Fig.4(a)や Fig.5(a)のように展開完了後のスピンレート は一致しない.これは,膜の折り数が違うせいで, Fig.3のよ うに展開前の質量分布が異なり,膜の展開前後での慣性モー メント比が一致しないためであると考えられる^[5].そこで,展 開前後での慣性モーメント比が両モデル間で一致していなく ても,展開前後でのスピンレートの比が一致するよう,時々 刻々のスピンレートを(3.1)式で修正する.

$$\frac{\omega_{mod} \quad \tilde{t}}{\omega_o^s} = 1 - \frac{\omega_o^L - \omega_e^L}{\omega_o^L} \cdot \frac{\omega_o^s - \omega_s \quad \tilde{t}}{\omega_o^s - \omega_e^s} \tag{3.1}$$

Fig.3 Mass distribution of undeployed membrane different fold number N_f

4. 数値シミュレーション結果

本章では、IKAROS フライトモデルの計算結果及びフライ トデータと、前章に示した手順で設計した小型モデルの計算 結果を比較する. なお、フルモデルの FEM では折り目の影響 が無視できるほど大きな構造である^[6]ため、折り目の影響は無 視している. Table 2 にフルモデルと小型モデル(case1,case2: 3.1 節に示す case1,2 のモデル, g-com: 3.2 節に示す重力補償 モデル)のノミナル値を示す.

Table 2	Nominal value of the full-scale model and the small				
models of IKAROS					

Item	Full-scale	Small	
	model	model	
Character	ristic parameters		
Characteristic time T [s]	5.00	case1,2: 0.319	
		g-com: 0.088	
Characteristic length X [m]	13.56	1.000	
Satellite main body			
Mass M_{rigid} [kg]	291	1.30	
Inertia I_{rigid} [kg m ²]	66.5	3.30×10^{-3}	
Initial spin rate ω_0 [rpm]	5.147	case1,2: 80.74	
		g-com: 293.5	
Diameter ϕ_{rigid} [mm]	1580	- 116.5	
T	ip mass		
Mass per one tip mass m_t	5.0×10^{-1}	4.6×10^{-3}	
[kg]			
Membrane			
Young's Modulus E [GPa]	3.0	4.1	
Density $\rho [\mathrm{kg/m^2}]$	1420	1450	
Thickness $h \left[\mu m \right]$	7.50	12.5	
Poisson's ratio ν [-]	0.3	0.3	
Damping factor γ [s]	7.80×10^{-5}	case1,2: 4.97×10^{-6}	
		g-com: 18.1×10 ⁻⁶	
Fold number N_f [-]	18.5	- 7.5	
Spring back factor in fold	0.40×10^{-4}	4.81×10^{-4}	
line k_f^{org} [N/m]			
Crease angle θ_{ref} [deg]	23.80	16.97	
Equivalent total length of	593.28	case1: 0.90	
fold line L_f [m]		case2, g-com: 16.6	
Center tether, Tip tether			
Young's modulus E_c [GPa]	11	100	
Density $\rho_c [\text{kg/m}^2]$	1813	case1,2: 1355	
		g-com: 1007	
Cross-sectional area A_c [m ²]	6.70×10^{-6}	$case1,2: 1.12 \times 10^{-6}$	
		g-com: 14.9×10 ⁻⁶	
Damping factor γ_c [s]	1.00×10^{-6}	case1,2: 12.7×10^{-6}	
· • •		g-com: 2.44×10 ⁻⁹	

Fig.4 にフルモデル(FEM)と折り目の影響を合わせた小型モ デル(case1)のスピンレートとの比較結果を, Fig.5 にフルモデ ル(FEM)と折り目の影響を無視した小型モデル(case2)のスピ ンレートとの比較結果を示す. なお,それぞれの図の(a)には (3.1)式による修正前,(b)には(3.1)式による修正後のスピンレ ートを示す.(3.1)式による修正を行うことで,スピンレート の収束値が一致し,より予測性能が高まった.また,折り目 の相似パラメータを一致させた小型モデル(case1)のスピンレ ートはフルモデルのスピンレートとよく一致している.一致 させていない小型モデル(case2)はスピンレートの収束が遅い. これは折り目剛性によって膜全体の剛性が大きくなったこと で減衰が大きくなったことが原因であると考えている.

Fig.4 Effect of modification of normalized spin rate during deployment (case1)

Fig.5 Effect of modification of normalized spin rate during deployment (case2)

次に、IKAROSのフライトデータと折り目の影響を考慮した小型モデルの比較結果を Fig.6 に示す. IKAROS 実機の

 $4.0 < \tilde{t} < 5.5$ 付近で波形が崩れているのは、4 つの保持タグ のうち1つの展開が遅れたことで非対称に展開してしまった ためと報告されている^[7]. そこで, 小型モデルのスピンレート の無次元時間 \tilde{t} を IKAROS フルモデルの FEM とフライトデ ータで比較したとき^図と同じだけシフトさせ、比較している.

(case1)

地上試験結果 5.

本章では本学所有の真空槽(φ =1.8 m, Fig.7(c))内で行った 小型モデルの地上試験とフルモデルの FEM 果及びフライト データにおけるスピンレートの比較を行う.

(a) ground experiment in vacuum chamber

(b) experiment model

(c) vacuum chamber Fig.7 Configuration of the ground experiment

地上実験の小型モデルは、重力を考慮した小型モデルであ り、3.2節で示した手順に沿って設計パラメータを決めた.小 型モデル(地上試験 2 回分と FEM(重力補償モデル))と IKAROS フルモデル(FEM)との比較を Fig.8 に、小型モデル の地上試験とフライトデータとの比較を Fig.9 に示す.

Fig.9 Comparison of the spin rate of small model obtained by ground test/FEM and that of fight data of full-scale model

地上実験の小型モデルとフルモデルのスピンレートの周波 数は $0.0 < \tilde{t} < 4.0$ 付近では特にあっている.また、フルモデ ルの波形のピークの角がとがっているのに対して、地上実験 の小型モデルの波形のピークの角は丸くなっている. これは 実験モデルの製造誤差や小型モデルの減衰がフルモデルとあ っていないこと, 膜面に搭載されている太陽電池セルや LCD 等を模擬したテープによる影響等が原因であると考えている. 現在、原因を調査するため、実験モデルの設計パラメータの 同定を行っている.

6. 結論

- ▶ 提案する力学的相似則をソーラーセイルのスピン展開に 適用し、小型モデルとフルモデルの運動を比較することで、 その有効性を示した.
- ▶ 完全に幾何学的相似でない小型モデルであっても,適切に 修正を加えることによって,運動予測が十分に可能になる ことを示した.
- 今後は実験モデルの設計パラメータの同定を行い,各設計 パラメータの影響を把握することで、フルモデルの運動を より精度よく再現できるような実験モデルの製作方法に ついて考察していく.

謝辞

本研究は、文科省・科研費 18H03817 の補助を受けました.

参考文献

- [1] C. H. M. Jenkins, Recent Advances in Gossamer Spacecraft, Progress in Aeronautics and Astronautics, 2006.
- [2] G. Greschik, Scaling of Nonlinear Phenomena with Emphasis on Thin Film Deployable Structures, ISBN 0-7923-6516-X (IU-TAM-IASS Symposium on Deployable Structures, Solid Mechanics and its Applications), Vol.80, pp.127-136, 2000.
- [3] 鈴木脩斗,格子投影法を用いた地上実験と数値解析によるスピン 展開膜面の運動解析, 平成30年度日本大学大学院理工学研究科航 空宇宙工学専攻修士論文, 2019.
- [4] A. Tatara and Y. Miyazaki, A scale law of spin-deployment motion between large membrane structure and small model with geometrical mismatch, Transaction of JSASS. (Under review)
- [5] 多々良飛鳥,宮崎康行,ソーラーセイルのスピン展開運動におけ る力学的相似則,JSASS-2020-3056(第62回構造強度に関する講演 会), pp.163-165, 2020.
- [6] 多々良飛鳥,柴山万優子,宮崎康行,折り目剛性及びそのばらつ きによる膜面構造物の展開への影響, JSASS-2019-4105 (第63回宇 宙科学技術連合講演会), 2019.
- [7] Y. Miyazaki, Y. Shirasawa, et al., "Conserving Finite Element Dynamics of Gossamer Structure and Its Application to Spinning Solar Sail "IKAROS", AIAA-2011-2181 (Proc. 52nd AIAA Structures, Structural Dynamics, and Materials Conf.), pp.1-17, April 2011.