コンベックステープを用いた膜面展開型デオービット機構の開発

Development of membrane deployment deorbit system by convex tapes

指導教授 宮 崎 康 行

M5010 多田伸 Noboru Tada

In recent years, space utilization of a membrane deployment structure has been attracting attention in many researchers. For example, membrane deployment structure is used for solar sails and de-orbits system. The de-orbit system requires light weight and excellent storage property for re-enter the nano-satellite in atmosphere. Therefore, membrane deployment structure has been studied to be applied for the de-orbit system. There have been proposed two deployment method for such a attructure, one of which is spin deployment and the other is the deployment by the assist of self-extending convex tapes. The objective of this study is to demonstrate and investigate a novel concepts of the de-orbit systems which consists of thin membranes and convex tapes

1. 序論

1.1 背景

近年,宇宙用膜面展開構造物が注目されている. 膜面構造 物は,ソーラーセイルに用いられる他,デオービット機構と して用いられている. 膜面を宇宙で展開する方法にはスピン 展開や伸展部材を用いた展開方法が提案されている. その中 でもコンベックステープを用いた展開方法は大型の機器を必 要とせず,必要な伸展力が得られるために超小型な人工衛星 にも搭載可能である. 実際に, NASAが開発した Nanosail-D2^{[11}(Fig.1)やClyde space が開発したデオービット機 構AELODOS^{[21}(Fig.1)には膜展開にコンベックステープが用 いられている.

Fig.1 Left:Nanosail-D2, Right:AELODOS

1.2 デオービット機構の重要性

現在,スペースデブリは国際問題になっており,スペース デブリは,宇宙開発が進むにつれて年々増加している,その 数は10cm以上のものだと約15,000個にも及んでいる.その中 で,運用終了をしている人工衛星は3,300機あり.今後さらに 増加することが予想され,運用中の人工衛星やISSと衝突する 危険性も増す.このことから,国際宇宙空間平和利用委員会 は2007年の報告において人工デブリの増加が将来の宇宙活動 に害をもたらす可能性について言及し,デブリ除去のガイド ラインを示した.そのうちの1つは,運用を終了した低軌道に ある人工衛星の同軌道への長期滞在を制限し,積極的に除去 を促すものである.この要求を満たすため,人工衛星にはデ オービット機構の搭載が必要不可欠となった.

1.3 デオービット機構の自己展開の原理

前述の"コンベックステープ"とは、市販のスチールメジャ ーに代表されるような一定の曲率を持った金属製のテープで ある.デオービット機構の展開方法は、Fig.2のように円筒状 のハブに巻きつけられたコンベックステープが、自らがもつ 弾性力によりほどけようとする力を利用している^[3]. ハブを1 軸自由状態にしておき, ハブの周囲にガイドローラーを設置 することによって, コンベックステープを任意の方向に伸展 させることができる.

Fig.2 Principal of deployment mechanism

1.4 問題点

コンベックステープが伸展中にハブから剥離する現象が伸 展挙動に大きく影響を与え、スムーズな展開の妨げになる. よって剥離現象(Fig.3)を明らかにすることがコンベックステ ープを用いたデオービット機構の開発において重要である^[4].

Fig.3 Separation of convex tape from rotating hub. Left: no separation, Right: separation

1.5 本研究の目的

コンベックステープを自己伸展部材とした膜面展開システムは、既に多くの地上実験にて膜面展開を成功させており、 実用化されつつある.しかし、展開が失敗する条件を定量的 に議論されていることが少ない.そこで、本研究では2つを 目的とする.

- 再現性が高く、安定して膜面を展開できるコンベックステ ープを用いた超小型人工衛星に搭載可能なデオービット機 構を開発する。
- ・伸展挙動に不具合を与えるパラメーターを明らかにする.
 以上により、コンベックステープを用いたデオービット機構の信頼性の向上に寄与することを目指す.

2. デオービット機構の開発

3U(10cm×10cm×30cm)サイズの超小型人工衛星(4kg)を大 気圏に5年以内に再突入させることを目的として、コンベッ クステープを用いたデオービット機構の開発を行った. 使用 しているコンベックステープとその諸元を Fig.4 と Table1 に 示し,デオービット機構と搭載している部品について Fig.5, その諸元を Table2 に示す. 開発したデオービット機構は機構 内に折り畳んだ膜面を収納し,コンベックステープを用いて 膜面を展開させる.また,デオービット機構は基板,バッテ リー,ソーラーパネルを搭載することによって,衛星からの 電力供給を必要とせず,衛星のメインシステムが故障した場 合でも,デオービット機構の電源が入り,膜面展開が可能で ある.

Fig.4 Shape parameters of convex tape

Length	L	590mm
Young's modulus	Е	127GPa
Poisson's ratio	v	0.3
Thickness	h	0.1mm
Height in deployed state	t	1.4mm
Width in deployed state	V	11.8mm
Half width	b	6.5mm
Arc-angle	φ	52.2rad
Radius of curvature	R	14.2mm

Table1 Parameters of convex tape

Table2 Properties of proposed deorbit device

Width	90[mm]	Weight	0.460[kg]
Depth	88[mm]	Area of a membrane	$0.3[m^2]$
Height	67.5[mm]	Effective sectional area	0.166[m ²]

2.1 デオービット機構の保持解放方法

デオービット機構の保持解放は, Fig.5 に示されているスト ッパー,ダイニーマ線,ワイヤーカッター(ニクロム線)を用 いている. 膜面展開の流れは Fig.6 の通りである. その詳細を 以下に示す.

- コンベックステープがハブの周りに巻きつけられ, 膜面 が折り畳まれケースの中に収納されている. コンベック ステープと膜面を含む展開機構は, ソーラーパネルの下 の2つのストッパーによって押さえられている. ストッ パーはダイニーマ線で押さえられている.
- ニクロム線に電流が流れると、ニクロム線の熱でダイニ ーマ線が切断される.
- バネヒンジによりストッパーが開き、展開機構がケース 内部にあるバネに押し出され、びっくり箱のように飛び 上がる.
- 4) 展開機構が上まで押し出されると、テープが自己伸展を 開始し膜面が展開する.

Fig.6 Deployment mechanism of the device

2.2 コスト

開発したデオービット機構は DIY ストアで売られているような市販品を多く用いているため、マージンを含めて 2100 ドルで製作可能である.用いている部品と価格を Table3 にまとめる.

Parts	Price(USD)	Parts	Price(USD)		
Convex tape	0.88	Spring	4.22		
Spring hinge	5.08	Rotation axis	1.77		
Gear	3.54	Aluminum plate	141		
Rotary damper	2.65	board	70.7		
Roller	3.54	Solar cell	884		
MPU	2.65	CdS cell	0.53		
Battery	53.1	Another parts	63.3		
Processing cost	710	Margin	153		
			Total 2100		

Table3 Estimated price of parts of proposed device (exchange rate : 1USD=113.09JPY)

2.3 軌道寿命

実際に衛星に取り付け, 膜面を展開させた場合(Fig.7)の軌 道を軌道計算ソフト「DAS^[5]」を用いて計算した.開発した デオービット機構は5年以内に大気圏に再突入することを目 的としている.計算結果により,膜面展開から3.68年後に大 気圏に再突入することが分かった.よって,マージンをもっ て5年以内に大気圏に再突入することが分かった.

Fig.7 Deployed configuration of proposed deorbit device with 3U CubeSat

2.4 電気的インターフェイス

デオービット機構のシステムブロック図を Fig.8 に示す.

Fig.9 System block of proposed device

詳細は以下の通りである.

- 衛星が宇宙へ放出される前は、ラッチングリレーは太陽 電池と CdS セルスイッチ(フォトトランジスタ)に接続さ れており、バッテリーとニクロム線との間にあるトラン ジスタスイッチは接続されていない.
- 2) バッテリーは打ち上げ前に完全に充電されている.
- 衛星が宇宙に放出されると、CdS セルスイッチが宇宙空間の強い太陽光にさらされることで、ON になる.
- 4) 次に, 自己保持スイッチが ON になる.
- 5) 結果として, MPU に電流が流れ, MPU が ON になり, 時間カウントを開始する.また, MPU は充電制御 IC に 接続されたレギュレータに太陽電池が接続されるよう に, ラッチングリレーの接続を切り替える.これにより, 太陽電池で発電された電力が MPU やバッテリーに供給 され, バッテリーは常にほぼ完全に充電され, MPU は 常に動作する.
- MPU が衛星から待機信号を受信すると、MPU は時間カ ウントをリセットする.
- MPU が衛星から強制展開信号を受信すると、トランジ スタスイッチを ON にしてニクロム線の加熱を開始し、 膜面展開が行われる.
- 8) マイクロスイッチがストッパーの開放を検出しない場合, MPU はニクロム線を再度加熱する.開放を検出した場合, MPU はニクロム線の加熱を中止する.
- 9) MPUが衛星からある一定期間,待機信号を受信せず時間カウントが一定値以上になると、トランジスタスイッチを ON にしニクロム線の加熱を開始し,膜面展開が行われる.
- 2.5 膜面の折り方

デオービット機構の膜面の折り方を決定するために,膜面 展開実験を重力環境,微小重力環境下で行った.折り方はミ ウラ折り,蛇腹折り,短冊折りの3種類から選定した.蛇腹 折りと短冊折りは同じ折り方であるが,蛇腹折りの折り線の 方向は展開方向に垂直であり,短冊折りの方向は平行である. Fig.10 に見られるように展開後の膜面積が最大になっているのは,短冊折りであることが分かる.この結果は重力環境下でも同様であった(Fig.11).

Figure 10 Deployed shape in micro-gravity environment. Left: Miura-folding, Center: bellows-folding, Right: strip-folding

Figure 11 Deployed shape in micro-gravity environment. Left: Miura-folding, Center: bellows-folding, Right: strip-folding

これらの結果から, 膜面の折り線の剛性は展開に重大な影響 を与えることが分かった. ミウラ折りと蛇腹折りの場合, 折 り目の剛性によるスプリングバック効果が大きいため, 膜面 は完全に展開されていない. 短冊折りの場合は, コンベック ステープの曲げ剛性は膜面のスプリングバック効果に対して 展開するのに十分であったため, 膜面が完全に展開できたと 考える. また, 短冊折りは折り方が単純であるため製造性が 高い. 以上の結果から, デオービット機構の膜面の折り方は 短冊折りに決定した.

2.5 剥離現象の対処法

剥離が起こる原因として考えられているのは、ハブがコン ベックステープの伸展速度を上回る速度で回転し、コンベッ クステープが空回りすることである.そのため、回転軸に取 り付けたギアにロータリーダンパを噛ませることでハブの角 速度を抑える方法を取っている^[4].Fig.12にデオービット機構 に搭載したロータリーダンパとギアを示す.

Fig.12 Gear and rotary damper

開発したデオービット機構は、ハブの角速度が 6530[deg/s]に 到達すると剥離することが実験より分かっている.よってハ ブの角速度が 6530[deg/s]を超えないように設計すればよい. ロータリーダンパを用いることでコンベックステープの伸展 速度がある一定値(1800[deg/s])に収束し、剥離現象が起きない ことは実験で確認しており、デオービット機構は微小重力環 境下での展開実験においても、剥離することなく膜面展開を 成功させている.その実験結果を次の章に示す.

3 デオービット機構の剥離条件

デオービット機構の特性と剥離する条件を評価するために 試作機を(Fig.13)を用いて以下の実験を行った.

- ロータリーダンパの有無によるハブの加速度計測実験
- 微小重力環境下での膜面展開実験

Fig.13 Prototype of proposed device

3.1 ロータリーダンパの有無によるハブの角速度計測実験

ロータリーダンパを取り付けていない場合とロータリーダンパを取り付けている場合のハブの角速度の時間変化を Fig.14 に示す.

Figure 14 Comparison of time history of angular velocity under 1G environment

Fig.14よりロータリーダンパを取り付けていない場合は 0.15[s]以降から角速度の増加率が下がっていることが分かる. これはハブの角速度が 6530[deg/s]に到達したときにコンベッ クステープがハブから剥離したことによる影響であり、テー プの巻き付け曲率が小さくなり,伸展力が弱まったためと考 えられる.また、ロータリーダンパを取り付けている場合で は、角速度が 1800[deg/s]程の収束しているのが分かる.これ によりロータリーダンパを用いることでコンベックステープ の伸展速度がある値に収束し、剥離現象が起きないことを確 認した.これにより、剥離現象はダンパを用いることで、防 ぐことができると考えられる.

3.2 微小重力環境下での膜面展開実験

実験から採用した短冊折りで折り畳んだ膜面を取り付けた ものと膜面を取り付けていないコンベックステープのみのも ののハブの角速度の時間変化から伸展挙動を評価する.その 結果を Fig.15 に示す.

Fig.15 Angular velocity of hub in micro-gravity environment

Fig.15から短冊折りの膜面を取り付けたものの角速度はコンベックステープのみのものと比べると 0.4 秒以降から角速度 が減少している.また膜面の展開の様子を Fig.16 示す.

Fig.16 Deployment of prototype of the proposed device under micro-gravity (Strip-folding)

Fig.16から0.4秒後から膜面が開き始めていることが分かる. コンベックステープの伸展方向とは逆方向に力が働くことで 角速度が減少していると考えられる.また,展開途中にハブ が剥離に到達する角速度に到達することはなく,剥離現象は 見られなかった.

4. 結論

本研究の結論を以下に示す

- 自律型のデオービット機構を提案し、膜面展開ではハブからコンベックステープが剥離せず展開することが確認した。
- コンベックステープがハブから剥離する条件を実験より定量的に評価した。
- 以上より、台形膜面と4本のコンベックステープと収納機構から成る台形型の膜面展開機構により、3UのCubeSatに搭載可能なサイズのデオービット機構が実現できることを示した。

5.今後の課題

開発したデオービット機構は,3Uの CubeSat に搭載可能な サイズのデオービット機構が実現できることを示したが,既 に宇宙実証されているデオービット機構より大きい.よって サイズを小さくする必要がある.現在は市販品の部品を多く 使っているが,今後は部品の設計を行いサイズを小さくする.

5. 謝辞

本研究は JSPS 科研費 15H04204 の助成を受けたものである. ここに記して感謝の意を表します.

参考文献

- Grant M: Thomas, Prototype Development And Dynamic Characterization of Deployable CubeSat, Booms March 2010.
- [2] Patrick H, Malcolm M ,Paul L ,Ross M, Andrew F, Craig C: Development status of AEOLDOS – A deorbit module for small satellite, Advances in Space Research, Volume 54 Issue1,July 2014.
- [3] Miyazaki Y., *et al.*, Analytical solution of the bending of a bi-convex boom, Mechanical Engineering Journal Vol.2 (2015) No.6 p.15 -00465.
- [4] Shota Inoue, Akihiro Tamura, Noboru Tada, Yasuyuki Miyazaki, Dynamic Characteristics of Self-Deployable Structure Consisting of Tape Springs, Digital Proceedings of 30th International Symposium on Space Technology and Science, 2015-c-21, pp. 1-6, July 7-9, 2015, Kobe International Convention Center, Japan.
- [5] NASAOrbitalDebrisProgramOffice http://orbitaldebris.jsc.nasa.gov/mitigate/das.html