薄膜構造物の亀裂進展防止に関する研究 Study on Prevention of Crack Growth for Thin Membrane Structures

指導教授 宮崎康行

M9004 伊藤美樹

1. 序論

1.1. 背景

薄い膜面を用いた薄膜構造物は軽量かつ収納性が高く,従 来の構造物と比べてわずかな重量と体積で大面積を確保出 来るという利点から,大型通信アンテナや発電システム,ソ ーラーセイル等の大型宇宙構造物への利用が期待されてお り,世界中で数多くの研究開発が進められている.

一方で、薄膜は一般に数µm程度の薄さであることが多く、 膜面に生じるしわや亀裂が発生しやすい欠点がある.さらに しわや亀裂に加えて、折り畳んで実機に収納する際に付く折 り目といった膜面の変形や薄膜太陽電池やテザー等の他部 材との接着は、上記に述べたソーラセイル等の薄膜構造物の 性能に大きく影響するため、しわの分布予測や亀裂、折り目、 接着による膜面の構造特性を把握することが今後の薄膜構 造物の設計・開発に必要である.

最近の薄膜構造物の宇宙実証として成果を挙げたのは,独 立行政法人宇宙航空研究開発機構・宇宙科学研究所 (JAXA/ISAS) と月・惑星探査プログラムグループ (JSPEC/JAXA)が開発した,世界初の小型ソーラー電力セ イル実証機「IKAROS」(Interplanetary Kite-craft Accelerated by Radiation Of the Sun)である.

Fig.1 小型ソーラー電力セイル実証機「IKAROS」 (軌道上イメージ図)

IKAROS は最大幅 20m の大型膜面(セイル)を展開し,太陽 光圧を膜面に受けることで得られる推進能力と,膜面に張り 付けた太陽電池の発電電力を利用したイオンエンジンを合 わせて,ハイブリッドな推進機関を搭載した惑星探査機であ る. IKAROS は 2010 年に打ち上がり,ソーラー電力セイル 探査機を実現するための要素技術の実証に成功した.さらに, 現在は IKAROS で得た実績を踏まえて,木星圏探査計画が 進行しており,開発が進められている^[1]. IKAROS で機能実 証を果した今後は,確実に木星圏へ向かうための十分な性能 を有する薄膜構造物の設計が必要となり,先に述べたしわや 亀裂,折り目,接着等に起因する膜面の構造特性を解明する ことが急務となっている.本研究ではこれらの中で亀裂に焦 点を当て,研究を行った.

1.2. 膜面における亀裂問題

IKAROS を含め、薄膜構造物の膜素材には高強度で耐熱性

に優れたポリイミドフィルムが使用されている.このポリイ ミドフィルムは,強度はあるが破壊に対する抵抗すなわち破 壊靭性は低いという特性を持つため,亀裂が入ると裂けやす く,亀裂が進展しやすい.IKAROSの膜面制作時においても 亀裂の進展防止として膜面に補強テープを貼ることで対策 が施されている²⁰が,膜面の亀裂に対する認識は経験による ものであり,理論的根拠が無いのが現状である.

Fig.2 IKAROSの膜面製作(補強テープの貼り付け)

また,薄膜構造物が性能低下することでミッション期間や重 量など様々な実機に影響を受ける.現実問題として次機の木 星圏惑星探査機では,薄膜構造物に割く重量はより軽量が求 められているので,これまでの様に膜面に十分に高強度な補 強を施すことが難しくなる.以上より,今後は薄膜構造物の 亀裂に対する特性の把握や補強に対する理論的根拠や評価 が必要であり,確実かつ最小限の亀裂防止設計を行うことが 求められてくる.軌道上における膜面の損傷同定法は研究が 行われているが,薄膜が亀裂に対してどのような特性を持つ のか,亀裂進展を防ぐにはどのような設計を施すのが適当か といった問題は取り扱われていない.

2. 目的と本研究のアプローチ

2.1. 目的

薄膜構造物の亀裂問題を踏まえ、本研究では、これまで経 験的認識であった薄膜構造物の亀裂進展現象を数値的に表 すことにより、亀裂が進展する条件は何か、また、どうすれ ば亀裂は止まるかを明らかにする.すなわち、(1)薄膜構造 物の亀裂進展特性を把握し、(2) 亀裂の進展防止策を提案す ることを目的とする.

2.2. 本研究のアプローチ

亀裂進展防止策として、補強テープと、薄膜を実機に収納 する際に付く折り目の2パターンについて検討する.補強テ ープに関しては、薄膜構造物の開発において既に採用されて いる方法であり、この方法の有効性を検討するために行う. ー方で折り目に関しては、折り目に対して垂直に亀裂を走ら せた時、折り目に到達した瞬間に抵抗を受けて亀裂が一瞬止 まる現象が見受けられる.折り目は薄膜構造物には必ずある 形状であり、この現象が亀裂進展防止策として有効であるな らば、今後の薄膜構造物の設計・開発にとって非常に有益と なると考え,提案した.具体的な手段は,補強テープや折り 目を追加した膜面と,防止策を施していない膜面とで最終的 な亀裂進展長さを比較する.更に,補強テープの面積や折り 目の長さ,付け方を変えて亀裂進展防止への効果を検証する.

2.3. 亀裂進展解析コード

一般的な有限要素法(FEM)を用いた場合, 亀裂のような 不連続領域を持つ対象の解析には亀裂が進行する度に要素 の再分割が必要となり, 複雑で効率の悪い処理となる.本研 究で用いる亀裂進展解析の手法はこの問題点を改善するた めに提案された, 拡張有限要素法(X-FEM)であり, 亀裂に よる不連続面の要素節点に新たな自由度と, 亀裂の形に対応 した近似関数を付加することにより, 連続体要素と独立して 亀裂の不連続要素を表現することが出来る. 解析コードは Matthew Pais(University of Florida)が開発した X-FEM コ ード(MATLAB Extended Finite Element (MXFEM) Code v1.2)をベースに解析を行った^[8].

3. 理論

3.1. 亀裂進展の判断(応力拡大係数の評価)

^{[3][4][5]}応力拡大係数は亀裂先端近傍の応力値と応力分布を 示す無次元量である.応力拡大係数はJ積分から算出した積 分値により導き出される.ここでJ積分は亀裂先端近傍に定 義した領域内で仮想的に進展させたエネルギの収支を計算 する方法で,線形弾性体においてJ積分値は次式で示される.

$$J = \int_{\Gamma} \left(W dy - \mathbf{T} \frac{\partial \mathbf{u}}{\partial x} ds \right)$$
(1)

ここで、 Γ は亀裂の先端を囲む曲線で、W はひずみエネル ギ密度、**T** は経路 Γ に沿う外向き法線ベクトル n_i を用いて、 $T_i = \sigma_{ij}n_j$ により定義される表面力ベクトルである. **u** は Γ 上の変位ベクトル、ds は Γ に沿う微小要素を表す.

このJ積分は弾性範囲内において,次式に示すように応力拡 大係数との関係式が成り立つ.

$$J = \frac{K_{\rm I}^2}{E_{\rm eff}} + \frac{K_{\rm II}^2}{E_{\rm eff}}$$
(2)

$$E_{eff} = \begin{cases} E & (plane \ stress) \\ \frac{E}{1-\nu^2} & (plane \ strain) \end{cases}$$
(3)

(*K*_I, *K*_Iはそれぞれ破壊モード I および II に対する応力 拡大係数)

一方で、靱性値が高いほどねばさが強いため亀裂は進展し にくい. 靱性値は応力拡大係数の形で表わされ、このときの 応力拡大係数を臨界応力拡大係数という. この(2)式で算出し たJ積分値が臨界応力拡大係数を上回ったとき、亀裂が進展 する.

3.2. パリス則(亀裂長さの算出)

^{[4[5]}パリス則は実験的に得られた関数であり、材料定数Cと $_{c}$ を用いて、繰り返し応力1サイクル当たりの亀裂長さ(亀 裂進展速度)を計算することが出来る、パリス則に基づく亀 裂進展速度を算出する式は(4)式で与えられる、 $C \ge m$ は実 験にて得られる定数である.

$$\frac{da}{dN} = C\Delta K^m \tag{4}$$

ここで, *da* は亀裂長さの変化量, *N* は応力の繰り返し数, *K* は応力拡大係数である.

4. 解析結果

4.1. 解析モデル

基本となる解析モデルは Fig.3 に示す様に,左端に初期亀 裂 10[mm]を持つ四角形膜面に± y 方向に引張荷重のみを与 え,両端の x 方向と左端下及び右端下の節点のみ y 方向の変 位を拘束したモデルである. Table1 にモデルパラメータを, Fig.3 に膜面モデルの図を示す.

Table1 膜面モデルのモデルパラメータ

補強テープの長さ[mm]	320	
補強テープの幅[mm]	15	
補強テープのヤング率[Gpa]	3.0	
補強テープのポアソン比	0.499	
初期亀裂長さ[mm]	10	
初期亀裂位置(X[mm],Y[mm])	x=0,y=160	
要素	アイソパラメトリック要素	
要素分割数	64×40(2560分割)	
引張荷重[N]	78.6×106(±y方向)	

Fig.3 膜面モデル

4.2. 補強テープによる亀裂進展防止策の検証

補強テープは粘着層とフィルムを重ね合わせた構造であ る.そのため,膜面に補強テープを貼ったモデルをモデル化 するには粘着層部分の接着の影響を考慮する必要があるが, 接着部分のモデル化に関しては研究段階であるため,今回は Fig.3 の膜面モデルに補強テープ部分の要素の物性値を変え ることで補強テープのモデル化を行っている.補強テープに は粘着層とポリイミドフィルム層で構成されるポリイミド テープを想定して解析を行った.ヤング率はフィルム層のポ リイミドフィルムのヤング率を,ポアソン比は粘着剤の解析 で 0.5 に極めて近い値が適用されているため,今回は*v* =0.499とした.テープの形状は,幅:15[mm]のテープを, 右端から*v*=50[mm]の位置に膜面の上端から下端に渡って 貼った場合と,同じ位置に亀裂線上の領域のみ貼った場合の 2 パターンで亀裂長さを比較した. Table2 に補強テープのモ デルのモデルパラメータを示す.

Table2 補強テープのモデルパラメータ

補強テープの長さ[mm]	320
補強テープの幅[mm]	15
補強テープのヤング率[Gpa]	3.0
補強テープのポアソン比	0.499

Fig4 に補強テープを貼ったモデルの図, Fig.5 に防止策を 施していないモデルの結果, Fig.6 に補強テープを膜面の上 下に渡って貼ったモデルの結果, Fig.7 に補強テープを亀裂 線上の領域のみに貼ったモデルの結果を示す. Table3 では各 モデルにおける亀裂長さの合計を表に示した.

Fig.4 補強テープ(大)を貼ったモデル(左) と補強テープ(小)を貼ったモデル(右)

Fig.5 防止策を施していないモデルの結果

Fig.6 補強テープ(大)を貼ったモデルの結果

Fig.7 補強テープ(小)を貼ったモデルの結果

Table3 各モデルにおける亀裂長さ合計

モデル	補強テープなし	補強テープ大	補強テープ小
亀裂長さ合計[mm]	9.76E+01	5.94E+01	6.27E+01

Fig.4, 5, 6 より,対策を施していないモデルより,補強 テープを貼ったモデルの方が亀裂は短い亀裂長さで止まる 上,テープ上で亀裂進展が停止することも確認できる.また, Table3 を見ると補強テープの面積が小さい方が補強テープ の面積が大きい場合より亀裂長さの合計がわずかに長い.そ こで,Fig.4 の 2 パターンの補強テープに加え,テープ形状 が縦×横の長さが 10×350[mm]の,横に細長いテープを Fig.4 と同じ位置から右端まで貼ったモデルの計 3 パターン で,ヤング率を変えて亀裂長さを比較した.ポリイミドフィ ルムは製品によるがヤング率が 3.0~7.0[GPa]であるため, この範囲で変更を行った.Fig.8 に結果を示す.

Fig.8 テープ面積の種類による亀裂長さの比較

以上よりテープ形状が 10×15[mm]と 10×350[mm]では 亀裂長さがほとんど変わらないが,320×15[mm]のテープ形 状は各ヤング率において他の形状よりも短い亀裂長さにな るという結果となった.よって,亀裂に対して水平方向の補 強テープでは端まで伸ばしても,短いテープ形状とさほど効 果は変わらず,亀裂に対して直交する方向において,亀裂進 展防止の効果が高いことが伺える.

補強テープは膜面と同じヤング率と,ポアソン比が 0.499 と, 体積変化をしない 0.5 の値に極めて近い値を用いていること が亀裂の停止に起因していると考えられる.

4.3. 折り目による亀裂進展防止策の検証

亀裂が折り目に垂直に進んだ時に受ける抵抗は,折り目に よって山型になることで,三次元的な剛性が発生する効果に よるものと推測する.本解析では二次元の解析であるため, 面要素と面要素の間にトラス要素を重ねることで膜面に折 り目がある状態をモデル化した.トラス要素はトラスの軸方 向のみに剛性を持つため, 亀裂進展方向と直交する方向の剛 性を増加させることで,折り目によって得られる三次元的な 剛性を模擬している.

なお,折り目部分は薄膜同様の物性値を使用した. Table4 に 折り目のモデルパラメータを示す.折り目は初期亀裂先端か ら *x* 方向に 50[mm]離れた位置に,薄膜の上下に渡って折り 目を入れた.

Fig.8 に折り目がないモデルの結果, Fig.9 に膜面に折り目 を付けたモデルの結果を, Table5 に亀裂長さ合計を表に示す.

Table4 折り目のモデルパラメータ		
折り目の長さ[mm]	320	
折り目のヤング率[Gpa]	3.0	
折り目のポアソン比	0.3	

∖折り目位置

Fig.8 折り目がないモデルの結果

Fig.9 折り目を付けたモデルの結果

Table5 各モデルにおける亀裂長さ合計

モデル	折り目なし	折り目あり
亀裂長さ合計[mm]	9.76E+01	9.77E+01

折り目がある場合と折り目がない場合では最終的な亀裂 長さの合計はほぼ同じであった.よって折り目による効果は 亀裂進展方向と直交する方向における剛性によるものでは なく,折り目の三次元形状に関係する要素に起因すると考え られる.今回の解析では折り目による亀裂進展防止の効果は 確認出来なかったため、今後は折り目の三次元的な形状を考 慮して解析することで,亀裂進展防止の原因を明らかにした い.

5. 結論

本研究で行った薄膜の亀裂進展解析を通して,実際に薄膜 構造物で使用されているポリイミドフィルムの亀裂に対す る特性を把握し, 亀裂進展の防止策について検証することが できた.本研究の結果から,以下について示すことが出来た. (1)現在,薄膜構造物に適用されている,補強テープを貼 るという亀裂防止対策について,その有効性を示すことがで きた.さらに,テープ形状を変えて亀裂長さを比較すること で,補強テープで補強した薄膜では補強テープの形状が亀裂 進展防止の効果に影響を及ぼし,特に亀裂進展方向に対して 直交する方向では亀裂進展防止の効果が高いことが確認で きた.

(2)折り目については,折り目に対して直交する方向の剛 性を高くすることで折り目による三次元的な剛性をモデル 化し解析を行ったが,折り目がない場合と折り目がある場合 では最終的な亀裂長さはほとんど変わらず,折り目による亀 裂進展防止の効果は得られなかった.本研究では,亀裂進展 長さを算出するパリス則における材料定数を求めることや, 補強テープの接着のモデル化,三次元的な折り目のモデル化, さらに実験との比較による解析の精度向上など,課題点は多 い.しかし,これまで経験的認識であった薄膜(ポリイミド フィルム)の亀裂特性や防止策に関して定量的に評価する一 つの方法を示すことができたと考えている.

参考文献

- [1] 船瀬龍,川口淳一郎,森治,津田雄一,佐伯孝尚,澤田弘崇, 「ソーラー電力セイルによる木星圏探査計画」,第54回宇宙 科学技術連合講演会,2010
- [2] 遠藤達也,三桝裕也,横田力男,IKAROS ミッション材料系 WG, ソーラーセイル WG,IKAROS デモンストレーションチーム,「第 54回宇宙科学技術連合講演会」第54回宇宙科学技術連合講演 会,2010
- [3] 柴沼一樹,宇都宮智昭,「X-FEMを用いた曲線亀裂のモデル化 と亀裂進展シミュレーションへの適用」,土木学会論文集 A, Vol. 63 No. 1, 108-121, 2007
- [4] 白鳥正樹,三好俊郎,松下久雄,「数値破壊力学」,実況出版 株式会社,1999
- [5] 小林英男, 「破壊力学」, 共立出版株式会社, 2008
- [6] 船瀬龍、川口淳一郎、森治、津田雄一、佐伯孝尚、澤田弘崇、 「ソーラー電力セイルによる木星圏探査計画」、第54回宇宙 科学技術連合講演会、2010
- [7] 遠藤達也,三桝裕也,横田力男,IKAROS ミッション材料系 WG, ソーラーセイル WG, IKAROS デモンストレーションチーム,「第 54 回宇宙科学技術連合講演会」 第 54 回宇宙科学技術連合講 演会,2010
- [8] Matthew Jon Pais, 「MATLAB Extended Finite Element (MXFEM) Code v1.2, 」, www.matthewpais.com, 2010