Derivation of Optimal Apodization Function in Starshade System.

宮崎・山﨑研究室 Miyazaki-Yamazaki Laboratory 和久田 恵那 Ena Wakuda

The starshade system is a direct observation system of exoplanets surrounding a star, which consists of a space telescope and a shield called occulter that has tens of meters in diameter. The occulter is placed between the space telescope and the star to block the light of the star. The starshade system has been researched by NASA. In order to suppress the diffraction of the stellar light, the light transmittance of the occulter must be varied in radial direction if the occulter has circular shape. Such a occulter is called apodized mask, and the transmittance is a function of the radius, which is called apodization function. A small starshade system that demonstrates the technology of starshade in space has been already proposed in our previous study. However, the optimal value of each design parameter which determines the apodization function in this small starshade has not been determined yet. In this paper, the optimal parameters are derived by comparing the contrast when the constraints in the optimization of the apodization function are changed in the small starshade.

1. 序論

1.1. 研究背景

系外惑星観測はこれまでそのほとんどが間接法で行われて きた.しかし,惑星の特徴づけに必要な惑星の表層や大気など の情報を取得するには,惑星を直接観測する必要がある^[1].系 外惑星を直接観測する際に一番の課題となるのは,恒星-惑星 間の光の強度比が大きすぎるために惑星の光をとらえること ができない点であり,これを解決するシステムが Fig.1 に示す スターシェードシステムである^[3].

Fig. 1 Starshade system

スターシェードシステムとはオカルタと呼ばれる遮蔽物を恒 星と宇宙望遠鏡の間に配置し、これが恒星の光を遮断すること で、惑星の直接観測を可能にするシステムである.スターシェ ードシステムの実現に向け、高い形状精度を有する数十 m 級 のオカルタの構造やその展開手法、望遠鏡とオカルタとの高精 度なフォーメーションフライトなどの研究が NASA/JPL 等で 進められている.

1.2. 小型スターシェード

これまで、スターシェードシステムを用いた系外惑星観測の 手法はいくつか提案されている²⁰⁹⁰⁴が、いずれも大規模で厳し い要件のため、高コストでリスクが大きい.よって、デモンス トレーションとして小型オカルタで予想通りの性能が発揮さ れることを実証できれば、大型のスターシェードによる系外惑 星観測につながることから、近年研究が進められている.筆者 らは、可視光による系外惑星の直接観測を可能にする、直径 50m 級のオカルタを用いたスターシェードシステムの実現に 向け、太陽系外のデブリ円盤を観測する直径 10m 級の小型オ カルタを用いた技術実証を検討している⁸.

1.3. 研究目的

筆者らの最終目標は、直径 50m 級のオカルタを用いたスタ

ーシェードシステムを開発し、系外惑星の直接観測を行うこと である. その前段階にあたる、小型オカルタでのデモンストレ ーション実験に向け、小型スターシェードシステムを構成する 物理的なパラメータの最適な設定を行う必要がある. 本論文で は、パラメータである内部作用角IWA、観測波長 λ 、オカル タ半径R、暗領域半径 ρ_{dark} を基準値から変化させた際の、評 価関数であるコントラストの傾向を確認し、最適パラメータか ら、後述するアポダイゼーション関数の導出を行う.

2. 理論

2.1. コントラスト計算

本研究では各パラメータを変化させた場合の評価関数としてコントラストを用いる.コントラストとは望遠鏡の位置における恒星光と回折光の強度比である.この値が10⁷以下であれば、デブリ円盤の直接観測が可能であることが先行研究からわかっている^[2].本研究では、可視光範囲の波長ごとにコントラストを導出するが、もっとも性能が悪い最大コントラストでも目標コントラストを達成するようなパラメータを設定するため、最大コントラストを導出する.光の強度は電場の2乗で表され、光源と観測者の間に遮蔽物がないときの光(恒星光)の電場 *Enull* と、遮蔽物があるときの光(回折光)の電場 *Eocc* からコントラストは(1)式のように表せる.ただし、幾何学的関係はFig.2 に示す通りであり、入は観測波長、Eo はオカルタへの入射波を平面波としたときの振幅である.

Fig. 2 Schematic of starshade

2.2. アポダイゼーション関数の導出

オカルタ形状が円である場合,光の回折により望遠鏡瞳面で 十分なコントラストは得られない.そこで,オカルタ膜の光の 透過率を円の中心から縁にかけて減少させる,アポダイズドマ スク(Fig.-a)が提案されている^[9].アポダイズドマスクによる回 折光の電場 *E_{o.apd}* は次式で表される.

$$E_{o,apod}(\rho) = E_0 e^{\frac{2\pi i}{\lambda}z} \left(1 - \frac{2\pi}{i\lambda z} \int_0^R e^{\frac{\pi i}{\lambda z}(r^2 + \rho^2)} J_0\left(\frac{2\pi r\rho}{\lambda z}\right) A(r) r dr \right)$$
(2)

ただし、Rはオカルタの最大半径、 J_0 は0次のベッセル関数 である.式(2)においてA(r)はアポダイゼーション関数(Fig. b)と呼ばれ、オカルタ膜の光の透過率を表す(A(r) = 0の時は 完全透過、A(r) = 1の時は完全非透過).望遠鏡瞳面で十分な コントラストを得るために以下の最適化問題⁹を解くことで、 最適なA(r)を求める.

$$\min: \gamma$$

$$\operatorname{sub. to}: \begin{cases} -\gamma \leq \operatorname{Re} \left[E_{o,apod}(\rho) / E_0 e^{2\pi i z/\lambda} \right] \leq \gamma \\ -\gamma \leq \operatorname{Im} \left[E_{o,apod}(\rho) / E_0 e^{2\pi i z/\lambda} \right] \leq \gamma \\ \text{for } \rho \in [0, \rho_{dark}], \lambda \in [\lambda_{\min}, \lambda_{\max}] \\ A(r) = 1 \quad \text{for } r \in [0, r_os] \\ A'(r) \leq 0 \quad \text{for } r \in [0, R] \\ -d \leq A''(r) \leq d \quad \text{for } r \in [0, R] \end{cases}$$

$$(3)$$

 $E_{o,apod}(\rho) / E_0 e^{2\pi i z/\lambda}$ の絶対値の2乗であるコントラスト を最小にすることを考え, $E_{o,apod}(\rho) / E_0 e^{2\pi i z/\lambda}$ の実部と虚 部について,抑制レベルγによる制約を設ける. λ_{\min} , λ_{\max} はそれぞれ最適化の対象とする観測波長の下限,上限であり, ρ_{dark} は暗領域の半径である.暗領域とは十分なコントラスト を達成したい領域であり,暗領域で10⁷以下のコントラストを 得ることを目標とする場合, $2\gamma^2 \leq 10^7$ であることが望まし い.また, r_{os} はオカルタ中央の非透過部の遮蔽円の半径,dは平滑条件の閾値である.

2.3. 各パラメータの範囲設定

スターシェードシステムにおける各パラメータの理論的な 範囲の設定を行う.最適化の際には、内部作用角IWA,観測 波長 λ ,オカルタの最大半径R,宇宙機間距離z,暗領域半径 ρ_{dark} の値を設定する必要がある.スターシェードシステムの 性能は内部作用角IWAとコントラストに依存し、これはフレ ネル数Fに依存することが知られている.各パラメータの関 係は次式で表される.

$$IWA = \frac{R}{z} \quad F = \frac{R^2}{z\lambda} = IWA\frac{R}{\lambda} \tag{4}$$

先行研究型から、デブリ円盤観測を行う際、十分なコントラス

トを達成するために必要なFはおよそ10であることがわかっ ており、本研究ではこれに基づき各パラメータの範囲を設定す る.まず、内部作用角IWAの範囲は、(4)式より100~1000[mas] となる.また、理学的成果を考慮し、観測波長 λ は可視光とす る.(4)式から明らかなように、FはIWAとオカルタ半径Rに比例し、 λ に反比例する.よって、 $\lambda = 850$ [mm]においてF=10を達成するRは0.54~5.4[m]程度となる.そこで、オカル タ半径Rを1~6[m]の範囲に設定すると、IWAの範囲が 100~1000[mas] のとき、宇宙機間距離 zはおよそ 200[km]~12000[km]となる.さらに、暗領域半径 ρ_{dark} は、望遠 鏡半径とフォーメーションフライトの精度から定められるマ ージンの合計より大きい必要があるため、望遠鏡半径を 0.05[m]、マージンを0.10[m]と仮定した0.15[m]を下限として、 0.15~0.55[m]まで変化させることとする.

3. 最適パラメータの導出

3.1. 各パラメータの基準値

最適化を行うパラメータの基準値をTable.1のように設定す る.これは、ケンタウルス座α星のハビタブルゾーンの下限値 700[mas]を参考にしたものである.ケンタウルス座α星は太陽 から最も近い恒星系で、ハビタブルゾーンの直接撮像が期待さ れている.最適化の対象とする波長範囲(以下、最適化波長範囲 と呼ぶ.)は可視光を包括するものであり、刻み幅は最適化波長 範囲における波長刻みのことである.

Table. 1 Reference parame	ters
Separation distance, z	1475 km
Occulter maximum radius , R	5 m
Lower wavelength , λ_{\min}	300 nm
Upper wavelength , λ_{\max}	1100 nm
Dark region radius, ρ_{dark}	0.25 m

3.2. 各パラメータの変化

3.2.1. 内部作用角変化

内部作用角 *IWA* を 100~1000[mas]まで 100[mas]刻みで変化 させた際のコントラスト変化を確認するため、オカルタ半径 R = 5[m] について、望遠鏡の瞳面における最大コントラスト を、観測波長 $\lambda = 400 \sim 850$ [nm] まで50 [nm]刻みで算出する. 各波長の最大コントラストをプロットしたグラフを Fig. 4 に 示す.

Fig. 4 Contrast maximum for each wavelength

Fig. 4 から、内部作用角が大きくなるにつれてコントラスト は改善することがわかる.

3.2.2. 波長変化

観測波長 λ について, 最適化波長範囲と刻み幅を変化させ た際のコントラスト変化を確認するため、内部作用角 IWA =700[mas], オカルタ半径 R =5[m]について, 最適化波長範囲 $\dot{\varepsilon}(1)$ 300~1100[nm], (2) 400~1000[nm], (3) 400~900[nm], (4) 400~850[nm]とし, 刻み幅Δλ を(a) 100[nm], (b) 10[nm]に変化 させた際の,望遠鏡の瞳面における周方向のコントラストを算 出する. 各最適化波長範囲 について、代表値として観測波長 $\lambda = 400 [nm]$ のときの瞳面($\rho_{dark} = 0.25 [m]$)でのコントラス トの図をFig. 5~ Fig. 8 に示す.

また,各最適化波長範囲について,瞳面での最大コントラスト を観測波長λ =400~850 [nm]まで 50 [nm]刻みで算出し, Table.2に示す. ただし、コントラストは10の累乗数で表す.

Table. 2 Contrast maximum in each wavelength					
波長範囲	刻み幅	400 [nm]	450 [nm]	500 [nm]	550 [nm]
200 1100 []	100 [nm]	-7.413	-8.727	-7.377	-8.702
300-1100 [nm]	10 [nm]	-10.12	-10.24	-10.11	-10.67
400 1000 []	100 [nm]	-6.889	-9.454	-7.591	-9.542
400-1000 [nm]	10 [nm]	-9.058	-9.058	-9.056	-9.535
400-1000 [nm]	100 [nm] 10 [nm]	-0.889 -9.058	-9.454 -9.058	-7.591 -9.056	-9.542 -9.535

400,000 []	100 [nm]	-7.072	-10.39	-8.670	-10.47
400-900 [nm]	10 [nm]	-10.12	-10.24	-10.11	-10.67
400 850 []	100 [nm]	-8.377	-11.86	-10.14	-11.87
400-850 [nm]	10 [nm]	-10.48	-10.62	-10.54	-10.77
波長範囲	刻み幅	600 [nm]	650 [nm]	700 [nm]	750 [nm]
200 1100 [pm]	100 [nm]	-7.334	-8.682	-8.665	-8.698
300-1100 [IIII]	10 [nm]	-10.16	-10.41	-10.35	-10.32
400,1000 [100 [nm]	-9.388	-9.688	-9.072	-9.523
400-1000 [mm]	10 [nm]	-9.353	-9.211	-9.246	-9.442
400,000 []	100 [nm]	-9.737	-10.46	-10.15	-10.51
400-900 [mm]	10 [nm]	-10.16	-10.41	-10.35	-10.32
400 850 []	100 [nm]	-10.74	-11.90	-11.96	-11.09
400-850 [mm]	10 [nm]	-10.66	-10.91	-10.93	-10.83
波長範囲	刻み幅	$800 \ [nm]$	850 [nm]		
200 1100 [mm]	100 [nm]	-8.274	-8.703		
300-1100 [IIII]	10 [nm]	-10.05	-9.798		
400,1000 []	100 [nm]	-9.622	-9.524		
400-1000 [IIIII]	10 [nm]	-9.448	-9.478		
400,000 [mm]	100 [nm]	-10.11	-10.01		
400-900 [nm]	10 [nm]	-10.05	-9.798		
400.850 []	100 [nm]	-7.821	-6.556		
400-000 [nm]	10 [nm]	-10.11	-7.899		

さらに、各最適化波長範囲について、観測波長λ =400~850 [nm] (50 [nm]刻み)における瞳面での最大コントラストの標準 偏差を Table.3 に示す.

Table. 3 Standar	d deviation of r	naximum contrast

Wavelength range	Step width	Standard deviation
200.1100	100nm	0.591
300-1100nm	10nm	0.225
400,1000,000	100nm	0.922
400-1000nm	$10 \mathrm{nm}$	0.178
400.000	100nm	1.035
400-900nm	10nm	0.225
400.950	100nm	1.868
400-850nm	10nm	0.856

Fig. 5~ Fig. 8から,刻み幅10[nm]は刻み幅100[nm]に比べ, 瞳面におけるコントラストが改善していることがわかる. これ は、刻み幅 100[nm]では極小値(ローカル・ミニマム)に入り込 み、最小値を算出できていないためであると考える.また、 Table.2から、最適化波長範囲を狭めるにつれてコントラスト は改善しているが、最適化波長範囲 400~850[nm]において、観 測波長 λ =850[nm]でコントラストが著しく悪化している. よ って、可視光において目標コントラストを達成するためには、 最適化波長範囲の上限はλ =850[nm]より大きい値を設定しな ければならないことがわかる. さらに、Table.3から、刻み幅 10[nm]は刻み幅 100[nm]に比べ、観測波長における最大コント ラストの標準偏差が小さく、ばらつきが少ないことがわかる.

3.2.3. オカルタ半径変化

オカルタ半径Rを1~5[m]まで1[m]刻みで変化させた際のコ ントラスト変化を確認するため、内部作用角 IWA =700[mas] について, 望遠鏡の瞳面における最大コントラストを, 観測波 長λ = 400 ~ 850 [nm] まで 50 [nm] 刻みで算出する. 各波長 の最大コントラストをプロットしたグラフを Fig. 9 に示す.

Fig.9から、オカルタ半径が大きくなるにつれてコントラストは改善することがわかる.

Fig. 9 Contrast maximum in each wavelength

3.2.4. 暗領域変化

暗領域半径 ρ_{dark} を0.15~0.55[m]まで0.10[m]刻みで変化させ た際のコントラスト変化を確認するため、内部作用角IWA=700[mas]、R = 5[m]について、望遠鏡の瞳面における最大コ ントラストを、観測波長 $\lambda = 400 \sim 850$ [nm]まで 50 [nm] 刻み で算出する。各波長の最大コントラストをプロットしたグラフ をFig. 10 に示す.

Fig. 10 から, 暗領域半径が小さくなるにつれてコントラスト は改善することがわかる.

3.3. 最適パラメータの導出

目標をケンタウルス座 α 星(*IWA* =700[mas], *R* =5[m])と 仮定すると、本研究においてもっともコントラストが改善した 最適化波長範囲と暗領域の組み合わせをTable.4に示す.また、 その際のアポダイゼーション関数をFig.11に、基準値との比 較として、各観測波長における最大コントラストをTable.5に 示す.ただし、コントラストは10の累乗数で表す.

Table. 4 Optimal par	ameters
----------------------	---------

Separation distance , z	$1475 \ \mathrm{km}$
Occulter maximum radius $, R$	$5 \mathrm{m}$
Lower wavelength , λ_{\min}	400 nm
Upper wavelength , λ_{\max} (Step:10)	900 nm
Dark region radius , ρ_{dark}	$0.15 \mathrm{m}$

Fig. 11 Optimal Apodization function

/	~ · ·			
	'ontroot	movimim	10 000	lonath
	20110030	INGAUTION	III CUU	ici idu i

					<u> </u>
	400 [nm]	450 [nm]	500 [nm]	550 [nm]	600 [nm]
基準値	-7.413	-8.727	-7.377	-8.702	-7.340
最適値	-10.67	-10.56	-10.56	-11.06	-10.63
	650 [nm]	700 [nm]	750 [nm]	800 [nm]	850 [nm]
基準値	650 [nm] -8.682	700 [nm] -8.665	750 [nm] -8.698	800 [nm] -8.274	850 [nm] -8.703

4. 結論

本研究では以下の結論を得た.

- 内部作用角IWA は大きいほどコントラストは改善する.
- ・ 波長λ について、刻み幅を小さくするほど瞳面におけるコントラストが改善し、観測波長ごとのコントラストのばらつきが減少する。また、最適化波長範囲を狭めるほどコントラストは改善するが、観測波長λ=850[nm]においてコントラスト値が悪化するため、上限はλ=850[nm]より大きい値を設定する必要がある。
- ・ オカルタ半径Rは大きいほどコントラストは改善する.
- 暗領域半径 pdark は小さいほどコントラストは改善するが、
 今後、フォーメーションフライトの要求から具体的な値を
 見積もる必要がある。
- 今回導出した最適パラメータとアポダイゼーション関数は、 Table. 4, Fig. 11 であり、基準値と比ベコントラストが約10
 ²改善した。

謝辞

本研究は文科省・科研費 17H01349 の補助を受けて行われました.

参考文献

- C. M.A. Deccia, E. Villalba, J. S. Parker, G. H. Born, W. Cash, and R. Nooman, Surfing The L2 Gradient with The Starshade in Search of Extraterrestrial Life, AIAA-2016-5666, Proc. AIAA SPACE Forum, San Diego, USA, 2016, 4 – 8 January.
- [2] The Probe Scale Science and Technology Definition Teams of NASA's Astrophysics Division: Exo-S: Starshade Probe-Class Exoplanet Direct Imaging Mission Concept, Final Report. 2015.

[3] NASA/JPL: HabEx Final Report. 2019.

- [4] Webster Cash, New Worlds Team : The New Worlds Observer: The Astrophysics Strategic Mission Concept Study, Proc. the SPIE, Vol. 7436, pp. 743606-743606-14, 2009.
- [5] Koenig, A. W., D'Amico, S., and Macintosh, B., "A Pareto-Optimal Characterization of Small-Scale Distributed Occulter/Telescope Systems", pp.1-2, 2015.
- [6] Robert J. Vanderbei : Eliminating Poisson's Spot with Linear Programming, Operations Research and Cyber-Infrastructure. Springer, Vol. 47, pp.455-468, 2009.
- [7] Koenig, A. W., D'Amico, S., and Macintosh, B., "Formation Design of Distributed Telescopes in Earth Orbit for Astrophysics Applications", June 16, pp.4, 2019.